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J .  Phys. A: Math. Gen. 17 (1984) 161 1-1624. Printed in Great Britain 

Schrodinger equation as recurrences: 111. 
Partitioning approach 

M Znojil 
Institute of Nuclear Physics, Czechoslovak Academy of Sciences, 250 68 Rei ,  Czecho- 
slovakia 

Received 3 October 1983, in final form 16 January 1984 

Abstract. In the generalised Lanczos basis, we partition the Hamiltonian to tridiagonal 
form and, murafis mutandis, apply the ideas of I and 11. It solves the Schrodinger eigenvalue 
problem again. The resulting method modifies and complements our formalism and 
simplifies its use and interpretation. As an example of application, the unique asymptotical 
effective Hamiltonian is derived. Also, for the anharmonic oscillators, the convergence of 
its continued fractional definition is proved and the compact formula for the higher-order 
asymptotic corrections is found. 

1. Introduction 

In this paper we intend to combine the preceding backward-running (I, Znojil 1983b) 
and forward-running (11, Znojil1984) recurrent treatments of the Schrijdinger equation 

H$ =E+ (1.1) 

into a unified picture. Let us start this development by repeating the main assumptions. 
First, we assume that (1.1) is represented in the generalised Lanczos basis In ) ,  

n = 1, 2 , .  . . . Then, the matrix 

( m l ~ l n )  = x m n  + E 6 m n  (1.2) 

is non-zero if and only if Im - nl s 1. 
The positive integer t defines the partitioning 

as introduced in I, while M = dim A I  > 0 is an independent variable needed for formal 
reasons only. 

Next, we assume that the asymptotic form of the Hamiltonian is simple enough, 

1 1 
% M + l t m M + l + n  =- rM + m %M + m M  + n + n ' - 3 M >> 1 (1.4) 

i.e., that it exhibits constant-matrix behaviour after re-scaling in the asymptotic region. 

T M + l + m  ( + M + l + n  
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Finally, we have to assume that the Hamiltonian can be factorised as in 1: 

TRr = y l-i U ( [ )  I-i U(l+1)7 

r= l  / = 1  

ff ( k )  . . .  1 0  
U ( k ) ,  0 11 ffy f f y k ’ > : :  

and also satisfies the asymptotic smoothness requirement in a ‘strong’ form: 

lim *p = *(‘I .  
k-u? 

Now, we may summarise briefly the contents of I as a definition of the parameters 
* ( ‘ ) E  (-1, 1) (as functions of the matrix elements of %‘in the asymptotic region), while 
I1 uses these parameters as input into the definition of the physical boundary conditions 
for recurrences, In I and 11, we have also obtained two non-equivalent finite- 
dimensional equivalents of the whole infinite-dimensional Schrodinger equation in an 
appropriate leading-order (and systematically improvable) approximation. 

From the methodical point of view, I and I1 have interpreted the recurrences ( l . l ) ,  
i.e. 

m t 1  n %,,,z, = 0, 2, = (nI+), m = 1 , 2 , .  . . (1.7) 

as initialised at m = CC and m = l ,  2, . . . , t, respectively. In the present continuation, 
the remaining possibility of initialising (1.7) at some intermediate values of m will be 
added to the formalism, and its partitioned re-formulation will be given. 

In § 2, we introduce three auxiliary projectors as in Feshbach (1958), corresponding, 
respectively, to the domain of initialisation and both directions of recurrences in the 
general case. 

In § 3, we concentrate on the forward-running recurrences and re-express the 
compact definition I1 of the regular general solution in the partitioned notation. We 
may shift the indices and, in particular, use the generalised (shifted) initialisations. Of 
course, the physical boundary conditions remain the same as in 11. 

In § 4, we re-investigate the backward-running matrix continued fractional ( MCF) 

recurrences of I. In the purely algebraic setting, their initialisation is shown to be 
(almost) arbitrary. The second partitioned representation of the regular solution is 
also obtained. 

In § 5 ,  we consider the ‘exactly solvable’ anharmonic oscillator (AHO) example in 
the asymptotic region, as an illustration of the present forward-backward-symmetric 
recurrent approach. We show that the ambiguities of Gk ( §  4) are only ‘local‘ and 
compensated, in effect, by the convergence properties. 

In § 6, the exceptional AHO properties inspire us to reparametrise (and to simplify 
significantly) the physical asymptotics (and the general formulae of I). In this way, 
the partitioned generalisation of I1 is completed. 

Numerical applications are omitted in the present methodical series. Nevertheless, 
the whole class of the AHO examples permits us to construct the higher-order perturba- 
tion corrections still by the purely algebraic means. Such a procedure appears to be 
surprisingly straightforward and is described in detail in the appendix. 

n =max( 1 , m - t )  
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2. Triple partitioning 

In accordance with theorem 1 of 11, each t-plet of projections 

(n,l+) = zn,, ni < 00, i=1 ,2 , .  . . , t (2.1) 

is defined by the 'initial' parameters z , ,  z2 ,  . . . , z,  and by the recurrences (1.7) and 
vice versa, we may start directly from the shifted initialisation (2.1) and try to define 
the general solution zk, k 2 1, in full analogy with the determinantal formula (2.2) of 
11. 

To simplify the notation, we may assume that all the values (2.1) lie within a 'model 
space' specified by the projector P. Provided that the dimension of this space is large 
enough, we may decompose the unit projector in such a way that 

R + P + Q = 1, Q X R  = R X Q  = 0. (2.2) 

This reflects the band-matrix character of X.  
As a consequence, the triply partitioned Schrodinger equation (1.7) 

R X R z  -k RXPz  = 0 

PXRz  + PRPz + PXQz = 0 

QXPz + Q X Q z  = 0 

permits us to eliminate Qz and Rz in a purely formal way, 

F f i P z  = 0 

zff = PXP - PXQ( Q X Q ) - ,  QXP - PRR ( RXR)-' RXP. 

(2.3) 

(2.4) 

Provided that the symbols (QXQ)- '  and ( R X R ) - '  are interpreted as limits of the 
finite-dimensional matrix inverses (using, e.g., a variational interpretation of (2.3)), 
the Feshbach-type, finite-dimensional equation (2.4) is exact and equivalent to equation 
(2.3). 

In the non-symmetric cases of the type (1.3), the variational background of (2.3) 
may become questionable sometimes (cf, e.g., Schwartz 1965). Then, a rigorous 
alternative formulation of the formal and solvable equivalents to (2.3) may be done 
still using the methods of 11. 

Starting from the detailed block structure (1.3) of X ,  we may write the projectors 
in a 'canonical' form 

m = l  

with the variable dimension of A ,  again. For the sake of definiteness, we may also 
assume that m2> m, and obtain the fully general effective Hamiltonian (2.4) in the 
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partitioned form 

\ 

\ 
Obviously, it differs from the PXP projection of the original band-matrix Hamiltonian 
in the modified blocks (submatrices) A,, and A,, only. In an implicit way, they are 
defined by (2.4) in the variational cases. 

3. Shifted initialisations and the partitioned regular type solutions 

In a non-variational interpretation of the Schrodinger equation (1 .7)  or (2.3), we have 
to re-consider the definition of Fff. We shall see that (2.4) need not fix the energies 
and vice versa, its modified or usual truncation definition may also be derived in a 
non-variational manner. 

Of course, the finite-dimensional R-projected ‘upper’ subspace cannot cause any 
trouble at all-the first auxiliary sequence of the effective Hamiltonian submatrices 
Fk is uniquely defined by the simple inversion 

F1 = A I ,  Fk=Ak-Ck(Fk-])-’Bk-I, k = 2 , 3 , .  . . . (3.1) 
Here, any random singularities are to be removed by an appropriate change of M 
Then, the recurrences 

/ Z n + I \  1 f?:’ ] = x, = - (Fm)-lB,xm+, (3.2) 

‘! z,+* ’ 
(with n = M +  ( m  - 2)t and r = t for m 2 2, or n = 0 and r = M for m = 1) also become 
well defined and enable us to re-construct easily the R-projected part of the z- solution 
from our knowledge of Pz. 

Concerning the Q-projected part of the infinite-dimensional vector z, it may be 
generated by the reversed formula 

(3 .3)  

It represents a partitioned analogue of the (recurrently defined) determinantal solution 
as given in 11. Alternatively, we may use (3.3) only to define some Q-projected and 
‘compactified’ shifted initialisations 

Zn+,, i = 1 , 2  , . . . ,  t, n = M + t x ( m  - 2). (3.4) 
Then, after an appropriate shift of indices, we may also use the closed determinantal 
definition ((2.2) of 11) of the general (non-truncated) regular-type solution again. 

A discussion of the corresponding physical asymptotic boundary conditions remains 
of course the same as in 0 3 of 11. We may re-emphasise that they are precisely 
equivalent to the normalisability requirement and entirely independent of the particular 
truncative or variational additional assumptions. 
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4. Re-interpretation of the effective Hamiltonians 

Recurrences (3.1) may be generated by a simple factorisation prescription 
\ I  

F1= A l ,  Fk = Ak - c k  (Fk - 1 ) - l  Bk- 1 ,  k = 2 , 3 , .  . . . 
Its formal counterpart may be related also to the recurrences introduced in I 

I B2IG3 1 x [" zz G j  (4.2) 
I B1IGZ 

x= j 
. . .  . . .  

Gk = A k -  Bk(Gk+i)-lCk+i, k = 1 , 2 , .  . . . 
In the light of the preceding paragraph, this may be understood also as a transition 
to the 'lower', Q-projected space. Now, contrary to the preceding case, any initialisa- 
tion may be used due to the infinite dimension of 0. 

To clarify the latter point, let us put formally 

(4.3) 

This is precisely equivalent to the Schrodinger recurrences (1 .7)  if and only if we 
satisfy the relations 

wk +Bk(Gk+i)-lwk+, =o,  k = 1 , 2 , ,  , . . (4.4) 
Now, with respect to the structure of the generalised Lanczos basis as mentioned 

in 11, there exists ko such that det Bk # 0 for all k 2 ko-we may define all the vectors 
wk from the initialisation Wb by means of (4.4). It is necessary to emphasise that all 
these initialisations are equivalent from the present point of view-their change only 
modifies definition (4.3) of the solution in terms of the auxiliary matrices Gk. Hence, 
in full analogy with the t = 1 example (Znojil 1983a), it is reasonable to pick up W ,  
(=  wk, k = 1, 2 , .  . .) = 0 in what follows. It has the following three merits. 

(1) Since GI = G I (  W , )  in general, we suppress the purely formal ambiguity of 
the physical effective Hamiltonian and make it compatible with its particular (trunca- 
tion) standard interpretation. 

It simplifies (4.3) and the asymptotic-behaviour analysis of z, 

1 
Xm+1 =-(Gm+l)-'Cm+lXm = n -~ c m +  1 - i )  3 

i=o Gm+I-i 
(4.5) 

( m - l  

m = 1 , 2 , .  . . , G I X l  = 0. 

It still permits us to vary the boundary conditions for Gk,  which is equivalent 
theorem 1 of 11. 
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Theorem 1. Irrespective of their initialisation, recurrences (4.2) may be used to  generate 
the general solution z of the infinite linear set (1.7) by the partitioned prescriptions 

(4.6) X, = - ( C, + 1 1 -' G, + 1 X, + I 9 n 3 2  

and (4.5), provided only that the ?dimensional equation 

F"" = A, - F, - G, r * " ' X m  = 0. (4.7) 

is satisfied at  some m 2 1. 

Proof. In analogy with (2.6), the 'most economical' effective t X t  Hamiltonian may 
be defined in the 'minimal' model space with m,=m2-equation (4.7) merely re- 
expresses the zero choice of the quantities W, in (4.3). Then, the insertion (of z 
resulting from (4.5) and (4.6)) leads to the direct verification of the Schrodinger 
recurrences (2.3). 

The  physical normalisability requirements should be imposed on X,, in the same 
way as in 11. Presumably, they may be related also to  m >> 1, at  least in the 
MCF solvable cases. Then, the variations of GN # A N  may become a basis for a 
systematic acceleration of convergence of the related algorithms. 

5. The effective Hamiltonians in the asymptotic region and their AHO example 

From the assumption (1.4), the asymptotic part of the Hamiltonian X may be written 
in the form 

Thus, up  to the same diagonal scaling factors 7 and (T, we may also consider the 
partitioned and asymptotic form of the effective Hamiltonian (4.3) with m 2 >  m, >> 1 
and denote 

i ' f  b \ 
c u b  

c u b  (5 .2 )  

\ c g '  

Here, the only unknown 'effective' submatrices f = f, and g = g, may be defined by 
the simple McF-type iterative formulae 

with an  appropriate initialisation. 
In the  particular AHO example with 

(5.3) 

4, = ( ;:., b,, = Cjl = ( i - j  2 t  )> i , j = l , 2  , . . . ,  t (5.4) 
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(cf both I and 11), the matrices fa and g, may be computed simply from the exactly 
solvable quadratic equations 

g, = a + b(g&')c, f= = a - c(f,)-l b (5.5) 

for the ? X ?-dimensional matrices. 

Lemma 1 .  Provided that (5.1) coincides with the AHO example 

x M + m M + n  = c1Mc2hmn(t)(l+0(1/M)) 
(5.6) 

in the asymptotic region, we have the unique leading-order formulae 

i, j =  1 , 2 .  . . t 
(5.7) 

s,, = S , , ( t )  = ( j !  i)' 
Fm, = clMc2STS, 

Gm, = c1 MC2SST, M I ,  m2 2 2, M = M 1 > > l  

defining the effective Hamiltonian (4.7) in an explicit way. 

Proof. This lies in mere re-formulation of § 3.2 of I. The uniqueness of (5.7) 
follows from the t-times degenerate character of the factorisation as defined by 
theorem 2 in I. 

In the iterative prescriptions (5.3), the unique fixed points (5.7) are merely semi- 
stable. Fortunately, whenever the iterations start from a larger matrix gk>ga: or 
fk  > fu;, they remain stable-this generalises the t = 1 result of Znojil (1983a). 

Lemma 2. In the AHO example (5.4), the MCF form of 

C 
1 

C 
1 

a-b-  
a - .  . . 

g,=a-b  (5 .8 )  

converges to the value SST for any integer t 3 1. The difference gk - g, is positive 
definite for the finite MCF approximants gk. 

Pro06 Let us denote 

g k  = ssT + ST6kS, 6 ,  = 1 

1 1 (5.9) y = - s .  
ST 

- 1 
8k+l = 1- 

1 + S-'STGkSST-' - 1 + yT( l /S,)y '  

Then, the Mth MCF iterate is simple since b = STST, a = SST+ STS and 

M 
T k  k 1 

- = I +  c (Y 1 Y .  
61, k = l  

(5.10) 

It is a positive definite matrix with the real eigenvalues 1. This follows from 
the minimax property of a sum of matrices (Wilkinson 1965) and implies that all the 
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Table 1. Anharmonic oscillator example-the eigenvalues of 1/6,w for t = 2. 

M A ‘ M ’  
1 

1 .oooo 
18.9442 
84.7612 

230.5425 
488.3105 
890.0720 

1467.8301 
2253.5860 
3279.3406 

1 .oooo 
1.0557 
1.2387 
1.4574 
1.6894 
1.9279 
2.1698 
2.4149 
2.6593 

eigenvalues pjMJ = l / h i M J  of S M  lie within the interval 
cally with increasing M (see table 1 as an example). 

(0, 1). They decrease monotoni- 
Indeed, the matrix difference 

(5.11) 

has positive eigenvalues only (see Wilkinson 1965). This process may stop at the fixed 
point 8, only, and this point is unique and equal to zero. 

We may summarise: for a class of initialisations (including the MCF one), the 
sequence Gk (similarly Fk) has a unique point of accumulation. The asymptotic AHO 

effective m, = m2 Hamiltonian becomes identically equal to zero: in the given approxi- 
mation, (4.7) does not restrict the ?-parametric freedom in the asymptotic initialisations 
at all. In order to remove this degeneracy of the physical and non-physical asymptotic 
boundary conditions, we must take the higher-order corrections into account. 

A priori, the corrections may have a non-matrix, one-parametric character. Such 
behaviour is confirmed numerically in table 1 for the t = 2 AHO system. In this example, 
an ordering of corrections and separation of the quickly and slowly convergent MCF 

components may also be achieved by non-numerical means. 

Lemma 3. In the t = 2 AHO example, we encounter the one-parametric behaviour of 
the second-order MCF corrections 

in the k >> 1 asymptotic region. 

Proof. Since 

s=(1 0 2 )  1 ’  Y = (  ’). a = ( 4  6 4  6). b = ( 4  1 0  1) 
-2 -3 

we have 

(L( k )  = i ( 2  k 3 +  3 k 2 +  k). (5.13) 
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Hence, the inversion of [S,'],, is ill conditioned for N >> 1 ,  

L V 3 (  1 1  ) +O(NZ). 
S N  1 1  

The exact computation recovers that the cancellations take place in the first two 
asymptotic orders, 

1 
SN 

det - = &(N4+ 8 N 3 +  23N2 + 2 8 N +  12) = & ( N +  1 ) ( N +  2 ) * ( N +  3 ) .  

Hence, we have SN = O( 1/N) as required by the smallness of the corrections, and 
formula (5 .12)  follows. 

When we insert (5 .12 )  into ( 5 . 3 ) ,  an iterative formula for hk will be obtained. In 
this formula, the higher-order corrections may be added as well, for example for us 
to estimate the errors. For further details and the generalisation of lemma 3, see the 
appendix. 

6. The partitioned boundary conditions 

6.1. The natural parametrisation of QXQ 

Let us introduce the parametrisation 

R,M+m,v+n =constant(M)[h(t)+p, h ( t -  1 ) + .  . .+pt-1 h ( l ) + p t ] m n ( l + O ( l / M ) )  

of the symmetric and smooth matrix X. It is inspired by the above AHO example and 
reflects its exceptional character: t-tuple degeneracy, slow convergence and non- 
applicability of the geometric convergence criterion of theorem 3 of I, etc. Moreover, 
it also simplifies the general results of I: 

Theorem 2. In the algebraic factorisation (1 .5 )  of (6 .1 )  

j =  1 

m, n = 1 , 2 , .  . . 

h ( t ) +  p i h ( t - i )  = x fi If+)(q) 
i =  1 

[ Z ( + ) ( a ) l m n  = S m n  + a 8 m + l n ,  

in terms of the matrices U = I,,,, the parameters 

(6 .3 )  

exhibit the a," l / a ,  ambiguity and are given by the roots of the algebraic equation 

Y'-p,  y r -1+pzyr -2 - .  . . + ( - l ) ' p , = O .  ( 6 . 4 )  

(y, = = @,, 4sh2Pi /2  = Yi, i = 1 , 2 , .  . . t 

Proof, This is merely a re-arrangement of the proof given in I for theorem 2.  Indeed, 
the change of variables gives precisely equation ( 1 6 )  of I. 
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6.2. The physical wavefunctions 

When we define Q z  by means of the factorised inversion of QXQ,  Qz= 
- (QXQ)-’Q2Pz ,  we put, in accordance with I or (6.2), 

/ C l \  

(6.5) 

\ c, 

Then, the normalisable solutions of (1.7) have a simple structure and they may be 
classified easily. 

Theorem 3. Provided that p , > O ,  i =  1, 2, . . . , t and 

t = 2 ,  P:> 4p2, or 

t = 3 ,  4 ( p : - 3 d 3 >  (qp1~2-2p?-27pd2,  or 

t = 4 ,  3P: > 8P2, 
(6.6) i!d3~? - 8 ~ : ) ~  > 1 2 ~ 4  + P: - 3 p i  ~3 

> 4-1’3/27p:- 72pzp4+ 2p:-9p1pzp3+ 27p:~41”~, 

etc, the parameters a, f 1 will be real. Then, the solutions of (1.7) as given by (24) 
in I, i.e., 

\ . . .  
will be normalisable if and only if we put a, = a:-’ for all i = 1, 2, . . . , t in (6.7). 

Proof. This starts from the simplicity of (6.4) and it complements only theorem 3 of 
I by the conditions guaranteeing the positivity of the roots, i.e., O <  a:-)< 1 < ai” < CO. 

6.3. The physical asymptotics of FE 

The preceding results enable us to interpret and remove simply the ambiguity as 
mentioned in theorem 2 .  

Theorem 4. From the asymptotically smooth Hamiltonian (5.1) factorised by means 
of the formulae (6.1) and (6.2), the unique asymptotical effective Hamiltonian (5.2) 
with M >> 1 may be defined by the products 

and 
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of the t X t-dimensional submatrices Z\!,?) of I (+).  The physical requirements fix ai = a!-) 
and a, = ai+) in (6.8) and (6.9), respectively. 

Proof. This follows from formula (10) in I and merely represents the fixed-point 
solution of the quadratic equations ( 5 . 5 )  combined with the relations (6.5), (3.3) and 
with theorem 3. In the light of the identity 

, o . . . o  1 \  

(6.10) 

\ 1  o . . . o /  

both the formulae are equivalent since JZ[:]lJ = Z\?T. 

For the slowly convergent AHo-type cases with pi<< 1 in (6.1) and 1 -maxlcu,( Close 
to zero, we have arrived at a complete generalisation of our recent t = 1 discussion 
(Znojil 1983a). Thus, the initialisations (or boundary conditions) (6.7) and (5.2) may 
be used in the recurrent prescriptions (3 .2H3.3)  or (4.5)-(4.6) as a basis of accelerated 
algorithms of the MCF type, as well as of the various asymptotic expansions and 
approximate formulae. 

7. Outlook and summary 

In this series of papers, an emphasis has been laid upon the recurrent algebraic structure 
of the Schrodinger-type band-matrix equation (2.1). Its physical solutions are specified 
symmetrically by the initial and asymptotic boundary conditions in a way paralleling 
the theory of ordinary differential equations. 

In this paper, we have modified the standard introduction of the auxiliary effective- 
Hamiltonian submatrices. The physical normalisability requirement then acquires a 
new understanding: among a finite number of the MCF fixed-points, it chooses the 
unique physical effective interaction given by the compact formula. 

In the forthcoming computations, various eigenvalue algorithms may be based on 
an analysis of stability of the matrix quadratic-equation roots (with respect to the 
underlying iterations). Besides a re-derivation and important improvements of the 
variational McF-type techniques, some new non-variational (e.g., Hill-type) approaches 
may also be derived from the formalism. Their description and tests have been deferred 
to a subsequent publication. 

Appendix. Convergence of the auxiliary matrix continued fractions and its 
acceleration 

Being inspired by the degenerate character of the AHO example in 8 5 ,  let us consider 
now the parameters pi in 0 6 as small corrections. Obviously, with the variational 
(MCF and trivial) g, =f l  = a initialisation of the auxiliary matrix sequences (5.3), only 
small deviations from the AHO results (lemmas 1-3) may be expected. Hence, the 
MCF convergence of g, (and, similarly, of fm of course) may be efficiently accelerated 
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by subtractions 
gk = giAHO) + 

in full analogy with the classical analytic continued fraction theory (Wall 1948). 
Now, we shall therefore describe the structure and k-dependence of the ‘known’ MCF 

quantities giAH0’ in more detail. Our study will be based on equation (5.9) and on 
an expansion of the matrices y and Sk in an appropriate bra and ket basis. 

Dimension t = 2 

The direct way to solve our problem is to compute the explicit formulae for Sk-this 
was done in the proof of lemma 3. In principle, this procedure may be used for t > 2 
as well, but the related algebra becomes very clumsy. Hence, we shall now describe 
the t = 2 method permitting an easy generalisation. It is based on the combinatorial 
identities in the corresponding formulae, and on an intuitive, though systematic, guess 
of the optimal parametrisations. So, with t = 2 we put 

1 
y = ( - 2  - 

This formula has the simple properties 

(u/u)=(VlVl)=2, ( u l u )  = ( u l u )  = 0 

which imply immediately that 

y k  = (-l)k(I - 2klu)( V I )  
y k T y k  = I-2k(lu)(ul+lu)(ul)+ 8k21u)(ul .  

Thus, we may write 

116N = Z l + ~ 2 ( l ~ ) ( ~ I + I ~ ) ( ~ / ) + ~ 3 I ~ ) ( ~ I  

N N 

z1 = N + 1 ,  z 2 = - 2  k = - N ( N + l ) ,  ~ 3 = 8  C k 2 = $ N ( N + 1 ) ( 2 N + 1 )  
k = l  k = l  

which reproduces (5.13) in a more elegant form. The final inverse then follows from 
the identity 2=lu)(ul+lu)(ul and reads 

8N = Y * l ~ ~ ~ ~ l + Y 2 ~ l ~ ~ ~ ~ I + l ~ ~ ~ ~ O + Y 3 l ~ ~ ~ ~ /  

Y I  = (2 + 1/2)lA,  yz= NIA, ~ 3 =  112A 
A = (N + 1)(22 - 4 N 2 +  l ) ,  z = $ N ( 2 N + l ) .  

In the second-order approximation, we obtain (5.12) again. 

Dimension t 5 2 

The main feature of (A2) is the separation of corrections with respect to their orders 
of magnitude. Hence, the one-parametric, essentially non-matrix (and, hence, non- 
numerical) character of the estimate (5.12) appears to be preserved in the higher-order 
corrections as well. The same phenomenon may be observed at the higher dimensions 
t and stems from the same reason, namely, from the projector-type character of the 
matrices y rt 1 .  
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After a short computation, we may determine the sign in these matrices, find that 
det(y( t )+(- l ) ' )=O and put 

The trial choice of 

(ull = ( O , O ,  . . . 0,1,1) 

leads to the possibility of picking up (ull = (1, -1, 1, -1, . . . , (-l)f+l) such that 

(-l)f+114) = r(0luA ( U I ) = 0 i = 1 , 2 , . .  . , t - l .  (A5) 

The form of the remaining Iui) vectors follows from (A3) and its sample is given in 
table 2 for a few values of t. In general, their generation is easily done by the recurrent 
symbolic manipulations on the computer. 

Table 2. Overlaps in the non-orthogonal basis 

2 1 

3 1 
2 

4 1 
2 
3 

5 1 
2 
3 
4 

-6 
-4 
-2 

In the next step, we may write 
9 -  t 

which leads to the recurrences 

('47) M ( m + l )  = ( - 1 ) f + l M ( m )  + ( - 1 ) i r + l ) m M i l ) +  M ( I ) G M ( ~ )  

Here, the most important property of the overlap matrix G ,  = (u i (u , )  is its nilpotent 
character, Gf- '  = 0. This may be derived most easily from the nilpotence of the matrix 
S- 1 (see (5.7)) and implies our main result: 
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Theorem 5. After N iterations of the AHO MCF mapping gl + g2 +.  . . + g N + I $  we get 
the estimate of the type (5.12) 

/ b o ) =  I ~ I L  (U,) = l U f + l )  =. . . = 0 

A ; ) ( N )  = o(i), N >> 1. 

Proof. We may put 

Now, the element-by-element summations of the type Xmk = O ( M k + l )  imply that 

ai" = O( m"+') 

and the asymptotic expansion of (A6) in the powers of m 

ym =~K, )u~-" :G: ; -~~(u , - , I+  1 Iu~)uIY:G~;~(u,~+.  . . 
( ' . I ) = (  l , f - l ) ,  

(1%-2)  
( 2 , f - l )  

may be inserted into (5.10) to give 
y"ym = ~ o f - l ) ( G ~ ; ! l a f - z )  i m )  2 t ( v , - l l + .  . . 

and 

1 
-=constant N z r - l ~ u f - l ) ( v f - l ~ + .  . . . 
8, 

(A101 

Now, since Mi;'= O(m'- ' )  for large m >> 1, we may consider the non-orthogonal 
basis lo0)(= I K ~ ) ) ,  ( U l ) ,  . . . , 1uf.-J and invert the matrix 

to get 
re-arrangement. 

= m-i/zm-'/2 XO(1). This coincides with the desired result after a slight 
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